Skip to main content

C++11 - noexcept function specifier

Today I would like to present another new feature of C++11 standard - noexcept specifier. This specifier allows to specify function which does not throw any exception. It should be used be used wherever possible to notify user that function should be throw and it makes such function non-throwable self-documented (similar to usage const).

Its usage is similar to usage const function specifier. The difference is that while const function tries to modify data it we have compilation error. In case of noexcept function throws any exception, code compiles, however it std::terminate function is invoked when we achieve throwing exception in such function. To understand it better, take a look on below example: Output of this example is: In point I, we are defining function as non-throwable using noexcept specifier. Such function should not throw, however in our example we are throwing exception in order to present what happens when noexcept function tries to throw exception.

In point II, we are defining additional funciton which we will set up as our terminate function.

We are assigning that funtion as terminate function in point III and replacing default std::terminate function by our terminateFunction(). This function will be invoked when we will try to throw any exception in our noexcept testFunction().

In point IV we are invoking our testFunction() which is noexcept function. However, because our function throws any exception and is specified as noexcept our customized std::terminate function (terminateFunction()) will be invoked and application will abort dumping core file (which is visible in last line of output which we received from out example).

Example used above you can find on our GitHub account here: https://github.com/xmementoit/CppAdventureExamples/tree/master/cpp11/noexcept

Comments

Popular posts from this blog

GDB Automatic Deadlock Detector

Have you ever had a problem with detection deadlock between threads in your C/C++ application? Would you like to do that automatically? Try this GDB Automatic Deadlock Detector from my github: GDB Automatic Deadlock Detector Picture source: http://csunplugged.org/wp-content/uploads/2015/03/deadlock.jpg1286488735

STL - count and count_if algorithms

One of the basic and most useful STL algorithms is algorithm which can be used to count number of elements within selected container according to specified criteria. In order to do that we can use std::count or std::count_if algorithm. std::count (firstElementIterator, lastElementIterator, elementForSearch) - is function which will go through container using firstElementIterator and lastElementIterator and return number of container elements which value is equal elementForSearch std::count_if (firstElementIterator, lastElementIterator, UnaryPredicateFunction) - is function which examine range from firstElementIterator to lastElementIterator and return number of container elements which fulfill UnaryPredicateFunction criteria. UnaryPredicateFunction is function having following signature: bool functionName(const Type& a) . So, count_if returns number of elements where UnaryPredicateFunction returns true for. For better understanding let's take a

Advanced C++ - Stack unwinding

Stack unwinding is normally a concept of removing function entries from call stack (also known as Execution stack, Control stack, Function stack or Run-time stack). Call Stack is a stack data structure that stores active functions' addresses and helps in supporting function call/return mechanism. Every time when a function is called, an entry is made into Call stack which contains the return address of the calling function where the control needs to return after the execution of called function. This entry is called by various names like stack frame , activation frame or activation record. With respect to exception handling , stack Unwinding is a process of linearly searching function call stack to reach exception handler. When an exception occurs, if it is not handled in current function where it is thrown, the function Call Stack is unwound until the control reaches try block and then passes to catch block at the end of try block to handle exception. Also, in this proc