Skip to main content

Advanced C++ - Template classes

Template class concept is similar to template functions. It allows creating generic type classes, which means that we can have many different classes which differ only in terms of types using one class code only.

See example below for better explanation:
Output of this example is:
Point I depicts definition of template class. As you can see it is very similar to definition of template function. We are defining myType as type which will be replaced with real type during usage of template class. Then we are defining class normally with usage of mapped temporary type.

Points II and III shows how to use template class for different class. We are defining two instances of our template class - for int and double types. Compiler will implicitely generate bodies of two clases based on those types and template definition. As for template functions, we are selecting real type using angle brackets.

Above example you can find on our github repository here: https://github.com/xmementoit/CppAdventureExamples/tree/master/advancedCpp/templateClass

Comments

Popular posts from this blog

STL - count and count_if algorithms

One of the basic and most useful STL algorithms is algorithm which can be used to count number of elements within selected container according to specified criteria. In order to do that we can use std::count or std::count_if algorithm. std::count (firstElementIterator, lastElementIterator, elementForSearch) - is function which will go through container using firstElementIterator and lastElementIterator and return number of container elements which value is equal elementForSearch std::count_if (firstElementIterator, lastElementIterator, UnaryPredicateFunction) - is function which examine range from firstElementIterator to lastElementIterator and return number of container elements which fulfill UnaryPredicateFunction criteria. UnaryPredicateFunction is function having following signature: bool functionName(const Type& a) . So, count_if returns number of elements where UnaryPredicateFunction returns true for. For better understanding let's take a...

Advanced C++ - Mutable Class Field

Today I would like to present C++ class' feature called mutable class field . Mutable class field is class' field modifier which allows to change its value even if object of the class is declared as const . Take a look at the example: Output of this example is: In point I of that example we are defining object of TestClass . Note that this object is const . As you can see in point Ia this class has three different member fields ( constInt, mutableConstInt, nonConstInt ). Those variables are public for this example, but do not worry about encapsulation here. It is just omitted for simplify this example. As you can see one of this member fields is marked as mutable class file using mutable keyword ( mutableConstInt ). Such variable can be modified even if object of class TestClass is const . It will be explained in next points of this example. In point II we are printing default values of testObject object initialized in initialization list of TestClass' default c...

C++ Multithreading - Race conditions

In the previous C++ Multithreading article I presented you how to pass parameters between threads. Take a detail look on the output of that example once again: In the first line of that output you can notice that output text from two threads is mixed. You are probably wondering why it happens? It is because we are not protecting resources which are shared by two threads (in this example cout stream is shared in both threads) which causes multithreading's phenomenon called race condition . Because threads switching and accessing to shared resources are managed by operating system we do not know when std::cout stream will be accessed by main thread and when it will be accessed by second thread. Therefore in the previous article I mentioned that output of the example can be little different on your computer than my output example. What's more it is possible that this output will be different for few consecutive invoking of the example on the same machine. It is beca...