Skip to main content

C++11 - Explicit override and final

Consider following inheritance situation:
Question is: will we have two override_func() functions in derived1 or only one because override_func(double a) from derived1 overrides override_func(int a) from base_class? Two, of course. It is because those functions has different signature (different types of arguments in this case). However sometimes user does not notice it and think that function override_func(double a) overrides function override_func(double a) in derived1 class. It can cause problem especially if someone is doing some modifications in override_func(int a) in base class and expects that those changes will have inpact on override_func(double a) from derived1 class. C++11 has smart mechanism which allow to notify compiler and other users that in derived class we would like to override function having exact the same signature in base class. It can be done using override keyword. Let's declare override_func(double a) in derived1 class this way:
What happend's here? We will have compile because using override function we infor compiler (and users) that we would like to override function having exactly the same signature in base class. In our case base class override_func(int a) has int type argument while in derived1 class we have double type argument. Compiler cannot find exact-signatured function in base class so it throws compiler-error. This mechanism is useful for better controlling overriding in C++11. Second useful new C++11 feature related to inheritance and polymorphism is final keyword. If we label function using final keyword, we notify compiler(and user) that such function cannot be overritten in any derived class. Let's see it on example:
While we are trying compile above example we will receive compile error. It is because function final_func() in base class is labeled as final function, so we cannot override it in derived1 class, but we are trying to do that. We can also label class using final keyword. Such label final class cannot be inherited by any other class. Let's see example:
In above example we will receive compile error, because class base is labelled as final. While we are trying to inhert from that class (derived1 class is trying it) compiler notify incorrectness and notify us about it using error message. That's it for today. If you would like to test above features yourself I prepared simple example of above mechanisms. You can compile it and try to compile and modify. Try to uncomment blocks of code labelled as UNCOMMENT and you will compiler errors and behaviours of program according to above examples. This example you can find here: https://github.com/xmementoit/CppAdventureExamples/tree/master/cpp11/explicitOverrideAndFinal

Comments

Popular posts from this blog

Blog's new layout

As you noticed this blog has new layout from today. I hope you like it. I think new layout looks better and more modern than previous one. Please, write you opinion about new layout in comments. If you have some ideas how to make this blog better, all ideas are welcomed. Enjoy new layout and blog articles.

STL - count and count_if algorithms

One of the basic and most useful STL algorithms is algorithm which can be used to count number of elements within selected container according to specified criteria. In order to do that we can use std::count or std::count_if algorithm. std::count (firstElementIterator, lastElementIterator, elementForSearch) - is function which will go through container using firstElementIterator and lastElementIterator and return number of container elements which value is equal elementForSearch std::count_if (firstElementIterator, lastElementIterator, UnaryPredicateFunction) - is function which examine range from firstElementIterator to lastElementIterator and return number of container elements which fulfill UnaryPredicateFunction criteria. UnaryPredicateFunction is function having following signature: bool functionName(const Type& a) . So, count_if returns number of elements where UnaryPredicateFunction returns true for. For better understanding let's take a...

QT - foreach algoriithm with const references performance improvement

Today I would like to show you optimal way of using foreach QT algorithm . I will show you why we should pass elements of foreach algorithm by const reference instead of passing them by value. Let me explain it on the below example: Output of this example is: In point I we are creating 3 objects of MyClass class and push them to myClasses QList element. In point II we are using QT foreach algorithm to invoke getValue() method for each object from myClasses list. As you can see on output text for that part of code we are invoking copy constructor before and destructor after invoking getValue() function. It is because we are passing each myClasses list element to foreach algorithm by value. Therefore we are copying that element at the beginning of foreach loop step and removing them (destructing) at the end. This is inefficient solution, especially when class of object being copied is big. It decreases performance. of our application. Solution for that i...