Skip to main content

C++11 - Auto type

At the beginning I would like to explain you one small new feature of C++11 standard. This feature is auto type.
auto is new C++11 type keyword which automatically deducts type of variable.
See example below:
What is type of variable b?  int of course. C++11 can automatically deduct type of variables using auto type. However remember - there is not desirable to use auto too often. It can make your code less readable. Try to use defined types as often as possible.
Nevertheless, there is little more useful example of usage auto type. Let say that we have been declared following map containing two strings as key-value instances:
Now if we would like to iterate through elements of above map in previous version of C++ (C++03) we had to declare iterator following way for example:
Thanks to auto type C++11 allow us to declare it that way:
Shorter and more comfortable.
That's it for the beginning. I hope you understand usage auto type in C++11 right now. Write your proposition of other ways of usage auto type in comments, please.

Comments

Popular posts from this blog

GDB Automatic Deadlock Detector

Have you ever had a problem with detection deadlock between threads in your C/C++ application? Would you like to do that automatically? Try this GDB Automatic Deadlock Detector from my github: GDB Automatic Deadlock Detector Picture source: http://csunplugged.org/wp-content/uploads/2015/03/deadlock.jpg1286488735

STL - count and count_if algorithms

One of the basic and most useful STL algorithms is algorithm which can be used to count number of elements within selected container according to specified criteria. In order to do that we can use std::count or std::count_if algorithm. std::count (firstElementIterator, lastElementIterator, elementForSearch) - is function which will go through container using firstElementIterator and lastElementIterator and return number of container elements which value is equal elementForSearch std::count_if (firstElementIterator, lastElementIterator, UnaryPredicateFunction) - is function which examine range from firstElementIterator to lastElementIterator and return number of container elements which fulfill UnaryPredicateFunction criteria. UnaryPredicateFunction is function having following signature: bool functionName(const Type& a) . So, count_if returns number of elements where UnaryPredicateFunction returns true for. For better understanding let's take a

Advanced C++ - Stack unwinding

Stack unwinding is normally a concept of removing function entries from call stack (also known as Execution stack, Control stack, Function stack or Run-time stack). Call Stack is a stack data structure that stores active functions' addresses and helps in supporting function call/return mechanism. Every time when a function is called, an entry is made into Call stack which contains the return address of the calling function where the control needs to return after the execution of called function. This entry is called by various names like stack frame , activation frame or activation record. With respect to exception handling , stack Unwinding is a process of linearly searching function call stack to reach exception handler. When an exception occurs, if it is not handled in current function where it is thrown, the function Call Stack is unwound until the control reaches try block and then passes to catch block at the end of try block to handle exception. Also, in this proc